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Figure 2: Cartesian path discontinuity in configuration space. A shows a straight, continuous EE path. B shows a curved line which represents the conceptualization of a joint space trajectory for Figure 3: Joint reconfiguration and planned EE trajectory. The robot reconfigures to the start state in A, and . : ‘ '
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Figure 5. SFE setup and jointtorques for vertical wheel orientation.
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The framework increases the success rate for contact
tasks by considering task wrenches and leveraging
the SA module as a fallback.

CO nd |t|0 nS . Figure 4 [A] X, y, z contact and resultant force filter. [B] Virtual plane for gripping [C] Manipulation mode window [D] Data fiter [E] LIDAR and Dashboard filter [F] Navigation mode in RViz
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